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SUMMARY 

PROBLEM 

Determine time evolving spectrum statistics for acoustic signals that have rever- 
berated from the ocean floor. 

RESULTS 

A theoretical investigation based upon the ray-wave synthesis of the time evolv- 
ing spectrum of ocean floor reverberation has been completed.  This study is applicable 
to the case of moving platforms, arbitrary beam patterns and a varying sound speed 
structure. 

RECOMMENDATION 

Apply the results of this study to practical ocean acoustics information transfer 
problems. 
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1      INTRODUCTION 

Acoustic echo ranging signals and acoustic communication signals that are received 
in the ocean frequently are distorted by reverberation generated by the interaction of the 
transmitted signal with the ocean bottom.   Additionally, if the transmitter and receiver 
platforms are moving, then the Doppler shifts in frequency, induced by the platform move- 
ments, further complicate the reverberation effects on the received signal. This gives added 
cause to consider reverberation to be an undesirable noise component. In the usual case of an 
assumed known environment the reverberation statistics can be determined to enable the 
transmitter and receiver to be designed to combat this noise. 

The problem considered here is an arbitrary but narrow band signal that is trans- 
mitted by one moving platform and received by another moving platform.   The platforms 
are assumed to have arbitrary transmit and receive beam patterns, respectively.   The sound 
speed structure is assumed to be spatially varying in a simple manner and the direct path 
signal generally follows a bending ray path to the receiver.   In addition to the direct path 
signal, the receiver intercepts the reverberation generated by the interaction between the 
transmitted signal and the ocean bottom.   It is assumed that the random bottom has a 
gaussian distribution.   The time evolving spectrum of the field is determined, which re- 
veals interesting frequency-spatial relations and provides useful estimates of the acoustic 
field. 

This development is restricted to the case of bottom scattering to avoid the mathe- 
matical complexity imposed by a moving surface.   However, it is possible that the bottom 
reverberation results can be applied to the case of surface reverberation, with certain quali- 
fications concerning Doppler spreading of frequencies caused by surface movement.   The 
effects of volume scattering are ignored also as this reverberation exhibits more compli- 
cated frequency-spatial relations than boundary scattering.   This is not a serious omission 
when bottom reverberation is present, because volume reverberation usually is much weak- 
er than bottom reverberation. 

The analysis leading to these results appears in Chapter 2 where the developed 
basic field expression represents the propagation and scattering mechanisms described 
earlier.   This development is based upon a generalization of the Kirchoff-Helmholtz inte- 
gral equation I»* m which the Green's function kernels have been replaced by ray theory 
kernels.   The surface field in this integral is approximated by a ray-Born approximation, 

the surface field is equated to the direct path ray field.   The surface field derivative 
is approximated by assuming local specular reflection with shading, which is a slight gen- 
eralization of the Kirchoff approximation.   This development is patterned after that of 
Eckart-*, who used the conventional Helmholtz integral equation and approximated the 
boundary conditions via the Born and Kirchoff approximations. Eckart's boundary assump- 
tions were later extended by Horton and Muir^ and Horton. Mitchell and Barnard^ to 
include a shading function.   Additionally, his method of approximating the integral was 
later extended by Gulin.6 

In each of these earlier developments, as well as in more recent ones, the primary 
interest has been centered on the case of specular reflection and its attendant reverbera- 
tion, i.e., the scattered return from the first few Freznel zones.   An exposition of much 
of this earlier work is given in Beckmann and Spizzichino^ and a more recent survey is 



given by Fortuin.^    The specular problem is discussed here, as well as the reverberation 
that follows the specular component, i.e., from the higher order Freznel zones.   While 
this component of reverberation has not been thoroughly researched one of the early 
investigations of this reverberation was conducted by Halley.9>10<l! 

In Chapter 3 the mean and covariance function of both components of rever- 
beration are found. These results give the statistical properties of the time dependent 
field that are needed for the determination in Chapter 4  of the time evolving "gener- 
alized instantaneous power spectrum1' (GIPS) 12 and also of the spectral variance.   The 
GIPS of the reverberation from the higher order Freznel zones reveals interesting fre- 
quency-spatial relations and represents a generalization of Halley's earlier work. 

2.    SCATTERING BY THE OCEAN BOTTOM 

THE TRANSMITTED SIGNAL 

A transmitter and receiver are assumed to be traveling, respectively, at arbitrary 
but constant velocities vj and v^, as indicated in figure 1.  The transmitter emits a 
signal 

s(t)  = m(t) exp(-i w0t) (la) 

m(t) = 4" f°° M(co) exp(-i cot) dco (lb) 

that propagates to the receiver along the direct ray path and also along ray paths that 
scatter from the bottom.   The emitted signal is Doppler shifted by the motion of the 
transmitter and amplitude weighted by the transmitter beam pattern and the direct path 
signal, as well as the signal that scatters from the bottom, retains this information.   The 
received signal is Doppler shifted further by the motion of the receiver and weighted by 
the receiver beam.   An expression is developed for the received signal in which the effect 
of each of these mechanisms is apparent.   For mathematical convenience the case of scat- 
tering by the moving surface is ignored; i.e., only the case of scattering by a stationary 
bottom is considered.   However, the bottom is assumed to be acoustically penetrable with 
scattering coefficient R(fp) and it is assumed that for the appropriate scattering coefficient 
the development approximately applies to the case of surface scattering. 

THE HARMONIC FIELD 

The field in the medium due to a harmonic transmission at frequency u> is given 
by U 

+ /s ds n • [0^(1) V-V 0o4)l  }x(ir) (2a) 
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Figure 1.   Ray geometry from transmitter to receiver. 



X(£r)  = A(f, r) exp (i k *({, r) ) (2b) 

E 
KU) =yidsn 

A(£,r)   = *,   - exp 
r -r Uf    dsV2 0/n+ln Ir'-r l) 

7(W  =   v- MihlMlh 

(2c) 

(2d) 

(2e) 

where "•" denotes a vector dot product, the time dependence in equation 2a, exp(-i cot), is 
omitted for convenience and the ray kernel is defined in equations 2b. c and d. The quantity 
n(= crj/c) is the index of refraction, where c is the sound speed and CQ is an arbitrary 
reference sound speed, the quantity k(= CJ/CQ) is the wave number; the integrals in equation 
2c and equation 2b are over ray paths between the points r and {. 

For the case of a constant sound speed structure, the phase expression in equation 2c 
becomes the range, r, the amplitude expression in equation 2b becomes the reciprocal of range, 
1/r, and the function 7 vanishes, which implies that there is no volume scattering.   It is 
assumed that the sound speed is varying sufficiently slowly so the volume scattering term 
in equation 2a can be ignored. This formalism is strictly valid only for the case of a nonmov- 
ing transmitter and receiver but for velocities v that are small compared to the sound 
speed, the associated error terms are of the order Ivl/c and can be ignored. 

Initially the transmission is considered from one element of the transmitter ar- 
ray to one element of the receiver array.   The transmitter source term is given by 

g6(I) = 47r6(?-?T)   rTw(|T) (3) 

where £(•) denotes the delta function and Typify) denotes the frequency dependent com- 
plex transmitter transfer function.   The field at an element of the receiver array due to 
this transmission is 

+ 4n    fds " ' [0"(*P' M V - V *c/fp, £T)1 

x($V IR) (4) 

where the transmitter, receiver and surface scattering points are denoted explicitly by J-p, 
|R and £p.   This is an integral equation which can be evaluated to first order by a ray- 
Born approximation and a modified Kirchoff approximation. 



Boundary Conditions 

The field on the scattering surface can be expressed as the sum of the incident 
and reflected fields 

The incident field is approximated by the shadowed direct path signal while the reflected 
field is approximated by the associated specular reflection. 

The amplitude and phase of the specular component will be the same as the inci- 
elent component except as they are modified by the reflection process and the total field 
on the surface can be written 

0O,(MT> = *(Mr) rT(x)(?T)x(?Tip)(i + R(ip)) (6) 

where IT is the shadowing function which is unity on the ensonified areas and zero on the 
shadowed areas. 

Similarly, the field gradient term is given by 

n • V0w(gp.fT) = n -VWkljpJr) + 0r(lpiT)l 

= i k n«piT) rTco(£T) x(lTip) 

X n • [V^kipij) + R(|p) V*r(?P,iT> 1 (7) 

where the amplitude gradient terms are much less than the phase gradient terms and are 
ignored. Since the phase expression in equation 2c is symmetrical, the gradient of the phase 
oi the incident component is approximated from the direct path phase 

= W(MT> 
= n({p)^£P,£j) 

where ^|p,|j) is the unit vector that is directed along the ray from the transmitter to 
the surface at £p. 

The gradient of the phase of the specular component immediately above the scat- 
tering plane can be found from the condition that its vector wave number has the same 
projection in the scattering surface as the incident component 

n x (Vi/zi+Vt//1*)   =   0   • (9) 

Since at the scattering surface the vector wave numbers have the same magnitude 

I 7*M = !Wrl (10) 



their projections perpendicular to the scattering surface are also the same 

n -(V^+Vi/zO   =0. (11) 

With this result the field gradient expression becomes 

■•V^^lj.)-  ik   Tl^pir)   rTjiT) x(lT,Ip) 

Xn  -^Ipi^Cl-Rdp)) (12) 

where the index of refraction is ignored since it is of the order of unity. 
The gradient of the ray kernel is similarly given by 

n   V x(?piT)  =   i k x(fp,fR) n   "eX?p,|R) (13) 

where 'et$p,|R) is the unit vector that is directed along the ray from the receiver to the 
surface at §p. 

Collecting terms the expression for the field at the receiver element becomes 

oahh) ■ "W£r> X(MR) 

+■£ /ds ii(|p,?T) rTcjdT) x(iT.|P) x(lp.?R) 

X n • ft|p,IR)( 1 +R(|p)) - •eXfp,IT)( 1 -R(?p)) ]    ■ 
(14) 

By Huygen's principle (see appendix A) the surface integral over just the direct path term 
vanishes, i.e., the integral vanishes for R = 0, and this expression is simplified to the form 

*W<MT> 
=   rTco«T> X(MR> 

+^ /dsn(?p,?T) rTw(|T) x(?Tip) xdp.lR) nip)) 

Xn-[^pJR)+«(lpJT)l (15) 

which is a first order approximation of the field at the receiver elements at {^ due to a 
harmonic transmission from the transmitter element at |j. 

Beamformed Signals 

The beamformed receiver output caused by the beamformed harmonic signal trans- 
mission can be obtained by summing over the transmitter and receiver apertures.   For this 



calculation it is assumed that the ranges between the arrays and the bottom are large com- 
pared to both the array sizes and bottom elevations and approximations are obtained for 
the phases and amplitudes. 

The phase of the direct path signal is expressed 

r h 
«MV =7.      d" *n8^R) <16) 

*R 

where u denotes an arbitrary path between £R and fp   This path is chosen via the ray 
path to the acoustic center of the transmitter, rj. 

«MR> =   L    T du* ' ™täR> + <H?
TiR)   . (17) 

Since the integrand is nearly constant for ranges that are large compared to the array sizes, 
the phase approximated is 

*(fT£R) =   eTR '(tT-rT) + ^T|R) (18) 

where e yR (= e(ry,rR) ^ e(ry,|R)) is the unit transmitter polar vector directed along the 
ray from the receiver acoustic center to the transmitter acoustic center and n = 1.   Identi- 
cal arugments yield the expression 

^(lRiT>   =   8RT * «R-?R> + *(VT) <19> 

where eRj is the unit receiver polar vector directed along the ray from the transmitter 
acoustic center to the receiver acoustic center. By symmetry of the phase function 
equation 18 becomes 

M^T^R)  =  8TR ' &T~*T) + ^RT ' ^R'^R) + MV?R)   ' ^20) 

The amplitude of the direct path signal is approximated 

A(|TiR)  =   A(?T,?R) (21) 

since the field expression is relatively insensitive to amplitude variations. 
Similarly, for the phase and amplitude expressions within the integral 



A(?T|p) = A(?T,?p) (22b) 

*(MR) 
= ^R 'k ^p)+%p • (?R-rR) + *(VR> (22C) 

A(|p,IR) = A(VR) (22d) 

where i? denotes the surface elevation, ?p denotes the projection of the surface point f p 
onto the plane of the mean surface and the vectors^p and/eplJ are the unit polar vectors 
at ry and ?p, respectively, directed along the rays from rp and ?u. 

Collecting the linearized phase expression and substituting into equation 15, along 
with the variable change 

ds    =      dxdy/n • E (23a) 

n      =        (z-T?)/IV(z-n)l , (23b) 

multiplying the complex receiver transfer function rRco(£R) and integrating over the 
apertures 

^co^R'V    = Pw<"®TR> PCJ^RT^ A(rT,rR) exp(i k i//(rT,rR)) 

+^   /dxdy II^p^j) A(?Tip) A(rp,?R) R(rp) 

X Po/^TP) Pw
("€RP)^(z^P))(8PT+^PR) 

X exp(i k[\//(rT,rp) + i//(rp,rR) 

+ T7(?p) £ ■ f§    *j     )]) (24) 

Pj-eju^     =    Jdh rTo;(*T) exP(i k 8Tu ' &r*T>) (25a) 

Pj^Ru>    =  fdh rRJ?R> exP^ k gRu * (IR-?R>> (25b) 

where the functions II and R were redefined to be functions of the mean plane coordinate 
and the function II is approximated as a function of the transmitter acoustic center.   The 



functions P^-eju) and P^C-CRU) represent the complex beam patterns of the trans- 
mitter and receiver beams, respectively, and the beam "look" direction is defined to be 
opposed to the unit vector arguments, i.e., back along the rays.   For the arguments eyR 

and Qßj the complex beam weighting is given in the direction of the ray that propagates 
between the transmitter and receiver.   The beam patterns in the surface integral with 
arguments ejp and e^p represent the cross sections of the complex beam patterns of 
the transmitter and receiver that lie in the scattering surface. 

THE PULSED FIELD 

Given the above expression for the beamformed output due to a beamformed har- 
monic transmission, the analogous expression for pulses is obtained by a Fourier trans- 
formation, provided that the spatial length of the pulse is long compared to the array 
dimensions and bottom elevations.   The Fourier transform of the complex envelope of 
the transmitted signal is denoted in equation lb by M(CJ) and the Fourier transform of the 
analytic signal is M(OJ-GL>Q), where CJQ is the angular carrier frequency.   The received sig- 
nal is given by 

0(rT,rR,t) = rX-ejR) PC-CRT*) A(rT,rR) 

X m(t-i//(rT,rR)/co) 

X exp[-i LJo(t-\lt(jj}R)lcQ)] 

+ ^   /dxdy II(rp,?T) A(?T,?p) A(rp,rR) R(rp) 

X p(-e'rp) P(-€Rp)V(z-i?(rp)) • (epqr+epj^ 

X m(t-(i//(rT,rp) + i//(rp,rR))/cQ) 

X expl-i cJoCt-Wrjjp) + i//(rp,rR) )/crj) 

+ i k0 T7(i?p) k • (epj+epR) ]   . (26) 

In this Fourier transformation the beam patterns are assumed to be constant over the band 
of the signal, the integral coefficient is approximated by kQ(= CJQ/CQ), which is valid for 
narrow band signals, and the small order term in the complex envelope is ignored.   This 
expression represents the field in the medium in terms of a broad class of signals, beam 
patterns, sound speed structures and bottoms for the "frozen" case and in the following 
section the effects of platform movement are included. 

11 



PLATFORM MOVEMENT 

For the case of a moving transmitter and receiver the platform position vectors, 
pp(t) and rR(t), are assumed to be functions of time while the motion of the medium is 
ignored for simplicity.   The surface motion has the effect of Doppler broadening of 
spectral components while the internal motions of the mediums have the effect of Doj< 
pier broadening and biasing of spectral components.   Both effects are assumed to be 
negligible compared to the Doppler shifts due to the transmitter and receiver motions. 

For the moving transmitter and receiver, the direct path phase is given by 

rT(r) 
*(Mr),rR(t))    =       I du -ne(u,rR(t)) (27a) (V r),?R(t))    =       f du* • n e(u,rR(t)) 

JTR(T) 

T   =   t-*(rT<r),;R(t))/co (27b) 

where r is the time at which the received signal was transmitted.   If the travel distance 
of the platforms is short compared to the range between platforms during the interval 
of a pulse it can be linearized 

MTT(T ),?R(t))    =      / du • n e(u,rR(t)) + i//(rT(0) ^R(t)) 
rT(0) 

=       e(rT(0) ,rR(t)) • VjT + i//(rT(0) ,rR(t))   • (28a) 

The second term is found from the symmetrical relation 

*        * f ;R(t)        ♦       . ~ 
*(rR(t) ,rT(0))    =     J^ du ■ n e(u,rT(0)) + i//(rR(tD) ,rT(0) 

■      e(?R(tD) ,rT(0))   • ^R(t-tD) + iM?R(tD) Jj(0)) 

(28b) 

tD     =      iMrT(°UR(tD))/c0 (28c) 

where tp is the arrival time via the direct path of the transmission at r=0.   Terms col- 
lected are 

12 



i//(rT(r),rR(t))    =   eTR • VjT + eRT • vR(t-tD) 

r    =    (MD) 
1-e • Vco 
i+aTR -vT/c0 

(29a) 

(29b) 

where the unit polar vectors eTR (= e(ry(0) ,rR(trj)) ^ e(rj(0) ,rR(t))) and 
eRj(= e(rR(tj)) ,rj(0)) are generalized to denote the ray directions at the transmitter 
position when the transmission starts and on the receiver position when the reception begins, 
respectively.   This occurs when the receiver is   at its position of initial reception or the 
transmitter at its position of initial transmission. 

Similarly, for the phase in the scattering integral 

Mtj(T)}?) + i//(rp,?R<t)) 

f  rj(r) „_> r   rp 
=   / du • n e(u,rp) +    / du • n e(u,rR,(t)) 

rR(t) 

f -  t - IHrjir) ,rp) + *(rp.?R(t)) ] /CQ 

(30a) 

(30b) 

where r is the time at which the signal received via rp was transmitted.   These expressions 
can be approximated by 

i//(rT(7),rp) + i//(rp,rR(t)) 

eyp • VJT + ej^p • vR(t-tpR) + i//(rT(0) ,rp) + i//(rp,rR(tpR)) 

(31a) 

r  =      (t-tPR) 
1_aRP ' ^R/°0 

[1+ejp • VT/CQ J 

lPR [ \JsCrjiO) ,rp) + i//(rp,rR(tpR)) 1 /CQ   ' 

(31b) 

(31c) 

where the subscript R on the time delay, tpR, emphasizes that the receiver position at the 
time of reception is different for different scattering points.   A first order expansion about 
the receiver position at the onset of the bottom return, rR(tp), i.e., from the specular 
point, gives 

13 



t//(rp,rR(tpR)) =  \KJ?,TR{X?)) + eRp • vR(tpR-tp) Old) 

where the unit vector eRp(= e(r(tp),rp) ) is defined to be the unit vector at the receiver 
that is directed along the ray from rp to the receiver location at the onset of the bottom 
return. Substituting in equation 31 gives 

i//(rT(r),rp) + i//(rp,rR(t)) 

= 8jp • VJT + eRp • vR(t-tp) 

+ i//(rT(0) ,rp) + i//(rp,rR(tp)) 

r. 

r =  (t-tp) 
1-e RP vR/c0 

[l+eTP   •   vT/c0J 

tp  =   [*(?T(0), rp) + i//(rp,?R(tp) ) ) / c0 

where the two receiver displacement terms combine to give a total displacement. 
The amplitude expressions are approximated 

A(rT(r),?R(t))   =   A(?T(0),?R(tD)) 

A(r*T(r),rp) A(rp,rR(t))   =   A(rT(0) ,?p) A(rp,?R(tp)) 

(32a) 

(32b) 

(32c) 

(33a) 

(33b) 

since the direct path term and scattering integral are relatively insensitive to small amplitude 
variations. 

Collecting results equation 26 becomes 

0(rRiT,t)   = p(-eTR) p(-eRT) A(rT,rR) 

x m(t-tD) exp[-i OJQ <*'D(t-tD)] 

+ i-0   J dxdy n(rp,rT) A(rT,rp) A(rp,rR) R(rp) 

x p(-ejp) p(-eRp)V(z-r?(rp))   •   (ePj+epR) 

x m(t-tp) exp(-i CüQ <*p(t-tp) + ikrj i?(rp)^ ] (34a) 

14 



where 

<*Q    = [ 1 - (eTR • vT + eRT • vR)/c0] (34b) 

ap    = [ 1 - (eTP • vT + eRp • vR)/c0] (34c) 

v z    = k • (epj + epR) (34d) 

and the small order terms in the complex envelope are ignored.   These equations very nearly 
represent the final field equations but they can be simplified further 

THE RECEIVED SIGNAL 

In the preceding calculations it was convenient to consider the unit ray vectors to 
be directed away from their corresponding source points.   In the following it will be con- 
venient to reverse their direction, i.e., to negate all unit ray vectors.   Then, whereas the 
vector euv was defined to be the vector at ru directed away from rv along their adjoining 
ray, i.e., along the ray that appropriately leads or follows the platform movement, it is 
now defined to be the vector at ru directed toward rv along their adjoining ray, i.e., along 
the ray that appropriately leads or follows the platform movement. 

The amplitude expressions were retained in their general functional form through- 
out the preceding ealeulations but for the following they will be approximated by the 
spherical spreading law 

A(TT}R)  =   1/r (35a) 

A(rj,rp) A(rp,rR)   =   l/rTrR (35b) 

where r is the transmitter-receiver range and rj and rR are the distances between the trans- 
mitter and receiver and the mean scattering plane, respectively. 

With the variable change t - t+tp equation 34 becomes 

0(t)   = 7P(«TR) P^RT* m(t) exP(_i w0 aD ^ 

+ -^.    jpll  \\(T?}J) R(?P) p(eTP) p(eRP) 

XV(z-nfrp))   •   (epj+epR) 

X m(t-Tp) exp[-i CJQ ap(t-r p) -ik0 T?(rp)i>z] (36a) 

<*D   =  [1 + (eTR ' vT +eRT • vR)/c0] (36b) 
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ap        = [1 + (eTR • vT + eRp • vR)/cQ] (36c) 

vz        = k • (epj + epR) (36d) 

rP        = tp^D (36e) 

P
(8

TU>   
= J dh rTcj^T) exP(_i ko ^Tu' (£r*r)) <36f) 

P(6Ru)     = / dh rRo;^R) exP(~j k0 8Ru * (SR"
?
R> 

} <36ß) 

which are our principle field equations. 
The functions II, R and n are assumed to be independent random variables.   Their 

distributions are unknown but by the central limit theorem, the integral term in equation 
36a has approximately a Gaussian distribution.   Consequently, the total field is a finite 
duration narrow band signal, i.e., the direct path signal, in a nonstationary Gaussian ran- 
dom signal.   The field is completely defined statistically by its mean value and correlation 
function and the Fourier transform of its correlation function gives the GIPS of the pro- 
cess.   These functions are calculated in Chapters 3 and 4. 

3.    THE ACOUSTIC FIELD STATISTICS 

THE MEAN FIELD 

The mean value of the field is the sum of the direct path term and the mean of the 
bottom scattering term 

<0>    =      0O
+<^1> (37a) 

00    = r P^TR) P^RT) m(t) exp(-i CüQ «D^ (37b 

X p(eTP) p(eRP) vz m(t-r p) 

X exp[-i co0 Ofp(t-Tp) 1 Q(k0 vz) (37c) 

where the mean value of the bottom height is zero and the characteristic function is de- 
fined 
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Q(k0 vz)  =   <exp|-i kQ T? VZ\>    . (38) 

If the bottom elevations satisfy a Gaussian distribution 

P(T?)  =   (27rh2r1/2exp(-T/2/2h:) (39a) 

h2 =  <T?2> (39b) 

then 

Q(k0uz)  =  expl^koh^'l (40) 

where h is the rms bottom height. 
At any time t the contributions to the reflected signal come from the ensonified 

portions of the bottom specified by 

0<(t-TpXT (41a) 

rp    = tp- tD (41b) 

tp     =  [ i//(rT(0) }?) + i//(rp,r*R< tp)) ] /cQ (41 c) 

tD    = i//(rT(0), ?R(tD) )/c0 . (4Id) 

The term tp represents the propagation time to the intersection of an ellipsoid-like surface, 
with the transmitter and receiver at its focii, and the mean scattering plane, while the term 
tj) represents the direct path propagation time between the transmitter and receiver. 

The onset of the direct path signal occurs at the time 

t0     = 0   • (42a) 

Denoting the specular point in the mean plane rgp the condition in equation 41a shows 
thai the onset of the specular scattering occurs at the time 

tj     = rsp (42b) 

and terminates at the time 

t:     = rsp + T   • (42c) 
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During the time interval tj < t < t2 the reflected signal comes from a region within an 
ellipse-like boundary centered about the specular point.   For the times t > t2 the re- 
ceived signal comes from a region confined between two ellipse-like boundaries centered 
about the specular point.   Denoting the vertical projections of the transmitter and re- 
ceiver positions onto the mean plane by rjp and rRp, the outer ellipse-like boundary 
passes under the transmitter and receiver at the respective times T-pp and rRp, while 
the inner ellipse-like boundary passes under the transmitter and receiver at the respec- 
time times (Typ + T) and (rRp + T).   The average times of passage are defined as 

t',     = (rTP + rRP)/2 (42d) 

t2     = (TTp+rRp)/2+T   • (42e) 

The ordering of these events is dependent upon the pulse length, but for signals that are 
short compared to the range between the platforms, say, the events are ordered 

t0<tl <t2<tl <t2   ' (42f) 

During the time interval tj < t < t2 the reflected signal is denoted specular scattering and 
it comes exclusively from the region between the transmitter and receiver, i.e., the "in- 
terior" region.   For wave lengths that are short compared to the ensonified region, the 
exponential function in equation 37c oscillates through a number of "lowest order 
Freznel zones" asrp varies over the interior region.   During the time interval t'~> < t < «> 
the reflected signal is denoted reverberant scattering and it comes exclusively from the 
complimentary "exterior" region which contains the higher order Freznel zones. 

Over the interior region, the radial vectors eyp and eRp are approximately con- 
stant, which implies that the range of Doppler shifts is small and the integrand is approx- 
imately constant.   Over the exterior region, the radial vectors range over their maximum 
domain of 2ir steradians and, for the case of moving platforms and nonconstant beam 
patterns, the range of Doppler shifts is maximized and the integrand exhibits its maxi- 
mum variations.   In the following it is convenient to consider just the cases of specular 
and reverberant scattering for the short pulse case and infer more complicated cases from 
these results. 

Specular Scattering 

Specular scattering is largely from a region around the specular point rgp and the 
specular scattering integral is approximated in equation 37c 
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<0S>=      k4?in4s^sP>P(£TSP) P(8RSP) m(t"TSP) 

X   J dxpdyp vz exp(- — (vzk0h)2} 

X exp[-i CJQ asP^ ~ rp) ^ (43^ 

where the functions extracted from the integral are slowly varying in the interior region 
and are approximated by their values at the specular point.  The remaining integral is 
approximated by integrating a first order expansion of the exponential function over the 
lowest order Freznel zones. 

The time delay between the transmitter and receiver via the scattering point rp 

tP     =    WrjCO), ?p) + Mr?}R(t?) )] / c0 (44) 

where rj^(tp) denotes the receiver position at the onset of reception of the scattered sig- 
nal.   This expression can be expanded about the specular point r§p by 

tP = 
(rT(0) ^ ,rp ^ \ 

f ne(u,rp)du+   I n e(u,rR(tp)) du     /cQ 

\ Vl'' / 
Xp yp \ 

-[        (*PT + ^PR> * * dx ' f (*PT + ^PR) ' J dV     /co 
XSP 7YSP / 

+ [ \K?T(°> ^SP} + *tfspJR(tp) ) 1 /c0 (45) 

when1 ejrj- and 6p^ are the unit vectors at the scattering point that are directed along the 
rays to the transmitter position when the transmission starts and the receiver position when 
the reception begins, respectively. 

First order expansions of the vector products can be developed from figure 2. 
At the specular point 

(eSPT + eSPR^    *   = ~cos^ + cos^ 

=  0 (46a) 
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BSPR 

Figure 2.   Ray vectors near specular point. 
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^SPT + ^SPR^ * J   = COS7r/2 + cos7r/2 

= 0 (46b) 

(eSPT + eSPR) • k  = COS(TT/2-0) + COS(TT/2-0) 

= 2 sinö (46c) 

where 0 is the grazing angle.   Perturbing the reflection point to rp, which is assumed to 
be a small displacement compared to the range, then the first order expansions 

(%j +^PR) •? =   - cos(0 + eTx) + cos(0 + eRx) 

= sin0(6Tx-eRx) 

= - (xp-xSp) sin20(2/R) (46d) 

(€pj +^PR) 'IS = cos(7r/2 + eTy) + cos(7r/2 + eRy) 

= " <eTy + eRy) 

■ - (yP - ySP) (2/R) (460 

(-eyp +^pR) • k =   COS(TT/2-0 + €Jz) + cos(ir/2-0 + eRz) 

=   2 sin0 (460 

where 

R   =   2 rTSprRSp/ (rTSp + rRSp)   • (46g) 

The bounds on the incremental angles are denoted by double subscripts, e.g., €j   is the 
incremental angle between the ray to the transmitter and the x-axis 

Substituting these expansions about the specular points into equation 43, the inte- 
gral factor becomes 

I   =   *>zSP exp(4(i>zSP kQ h)2] exp[-i coQ asp(t-rsp) ] 

X   JdxpdyPexpli^£  (sin2ö(xp-xSp)2 + (yp-ySp)2)]   • 

(47) 
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With the variable changes 

ti = /kQ^P   sinö(xp-xsp);  t2=Y^?   (yp-ySP>      (4**) 

this integral can be cast into the form of a product of Freznel integrals 

I   = vz$p exP["T^zSP k0 h)"l exp[-i coQ 0fSP^t"rSP) 1 

X(koaSpsin0J   f*t\ exP0 *j)   / dt2 exP(l r? 

= vS^ exp '"T^ZSP 
ko h>2l exP H "o «spC-'sp) l <49> 

Substituting back into the specular scattering integral, then 

<^SR>  = <»SPX
R

SP> »vl^ispkbW2! 

X p(eTSp) P(eRSP) m(t - rsp) 

X exp[-i CJQ crsP(t"rSP^ ' /(rTSP + rRSP) *50a) 

asp      =       [1 + (&TSP ' nT + ^RSP ' "R^ ' c0^ (50b^ 

"zSP     =       2 sinö   * (50c) 

This is a principal result showing that the mean reflection from the near surface is a 
specular reflected signal attenuated by shading absorption and surface roughness.   The 
starting and stopping times of this signal are given in equation 42b,c. 

Reverberant Scattering 

For the case of reverberant scattering it is convenient to represent the signal's 
complex envelope by the integral 

T 
m(t-rp)   =  e

L^|      dt'   m(t' )pe(t-rp-f) (51a) 
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Pe(t')      =       l/e 0<t'   <e 

=      0   • elsewhere (51b) 

Substituting into the expression for the mean value of the reflected field in equation 37c, 

<*R>=      UTA     lJ *'   m(,')   r     I2«   ^Ä ^yR/ e-0  4m     Jo Jo       Jo rjrS 

X <lI(rpJT)><R(rp)> v exPt-J(i;z k0 h)2] 

X   pe(t-rrt' )  exp[-i CJ0 ap(t-rp) ] (52) 

where pj, Oj are the cylindrical coordinates in the mean scattering plane about the trans- 
mitter. 

The only contribution to the inner integral at a time t satisfying equation 52 
comes from an ellipse-like band defined by the condition 

0<(t-rp-t')<e    • (53) 

The radial coordinate integration over this band can be easily performed. For a fixed time 
t, angular coordinate dj and parameter t' the upper and lower radial coordinate limits are 
of the form 

pT,u     =      ^T(t' ÖT' *' > (54a> 

PTL    =      pT(t, 0T, t»  +c)     • (54b) 

1 xpanding the lower limit in a Taylor series about the parameter t' 

"T,L    "      PT,u + ffi] HuOjS) <54c> 

and the integral in equation 52 becomes 
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<^R> 47T1 / o 

2TT 

'   m(t')    / dÖT   J?T_<n(rp,rT)> <R(rp)> 
/ 0 rTrT 

X p(^TP) pC^Rp) v'z exp[-i(*z k0 h)2] 

X exp(-i co0 apt1 ) (-dpT/dt' ) ] 
(t,0T,t' ) (55) 

where the integrand is evaluated at the point on the ellipse-like band (t, 0y, t').   Since 
the quantities in brackets are relatively insensitive to variations in t' and become inde- 
pendent of t'     for t - oo, the integrals can be approximately uncoupled 

<*R> Ä l> /^W(rp/rT)><R(r"p)> 

X p(%p) p(%P) P2 exp[-J^z kQ h)2] 

X (-d pT/df ) 
(t, 0T)JO 

Since the complex envelope is bandlimited below the frequency cjgcxp 

0R = O 

dt'  m(t') exp(-ico0Q!pt) 

(56) 

(57) 

which shows that the signal scattered from the exterior region is incoherent and has no 
specular component. 

THE CORRELATION FUNCTION 

The correlation function for the total field is given by 

< 0(t+T) 0 * (t)>       = 0Q(t+T) 0Q*(t) + 0o(t + T) < 0, *(t)> 

+ 05(t)  <*l<t + T)>   +    <0i(t+r)0|(t)> 

(58) 
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where the mean was computed in the mean field section.   The correlation function of the 
reflected field is given from equation 36a by 

k°2 ffff dxpdypdxpdyp 
7T72 MM !    ! Cn(rp-rp,rT) 
(47T) rTrRrTrR 

C(t+r,t)  =  <01(t+r)0,*(t)> 

X CR(rp-*p) pveTp) p(eRp) p*(eTp/) p*(eRp0 

X Cs (rp-rp') m(t+r-rp) m*(t-r'p) 

X exp[-i cog ap(t+T-7p) + i CJQ Qf'p(t+T-r'p)] (59a) 

Cn(ifp-rp^r)  = <n(rP,i!
T) II(rp,rT)> (59b) 

CR(rp-r*p)   =  <R(rp) R(?ji) (59c) 

Cs(rrrp)  = <IVU-T?) '(^PT^PR)] IVW) • (%^PR) 1 

X exp[-i k0 r\vz + i k0 T?» P2»]> (59d) 

where homogeneous correlations are assumed.   In this expression the correlation functions 
CJ-J, CR and C $ are tor the shading function, the reflection coefficient and the geometric 
scattering coefficient, respectively, and the expectation operator separates due to the inde- 
pendences of II, R and r\.   Since the correlations vanish for  I rp-rp I » 0 this integral 
can be reduced to a single surface integral and evaluated for the cases of scattering from 
the interior and exterior regions separately as in the preceding section. 

The geometric scattering coefficient correlation function can be approximated, 
where vz is much more slowly varying than 77, 

Cs(rrrp)     =   <| f^pj-He^) • (k - (-i kQ vz)-y) exp(-i kQ r\vz) ] 

X ICeYx^PR) ' d - (-i k0 v$-V%) exp(i kQ vz 77») | > 

=  {   Vi - vJS k0 vzT
x [ (SfrtfJta) • V' 1 

+ H k0 vzr
l a k0 pzr

l [(^PT^PR) -vif^r^pR) • vi I 

X Q2(k0 vzy k0 v£ ?p-r£) (60) 
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where the function 

Q2(k0 "z* ^ vz> V*P*  = <exPl~ik0T?i;z + ik0T?'i;z1> (6,) 

is the joint characteristic function of the bottom elevations. 
Assuming a jointly normal distribution for the surface the joint characteristic func- 

tion becomes 

Q2(k0 vz% k0 v'r ?p-rp)  =  exp[-4< (kQ huz)2 t (kQ h^)2 

-2 (kQ h^z)(k0 hi^) (y lrrrp •)) 1        (62a) 

C^lrp-rpD   =   <T?(rp) r?(?p)> /h2 (62b) 

C^O)  =   1 (62c) 

where an homogeneous isotropic bottom is assumed. 
The above expression can be approximated by a first order expansion of the sur- 

face correlation function 

S( 'V*P ')    "      11 " lrr
?P l/a2], frp-^p I < a 

a      0, Irp-rp I > a   , . (63) 

i.e., the surface correlation vanishes within the distance a where a is the surface correlation 
distance.   Since the correlation distance is short compared to the ranges from which energy 
is scattered, the angles to the two points rp and rj> can be equated. 

Collecting results then 

Cs(rp-rp)     =     11£ + 2i>z(i kQ vz)"X [ (ePT+epR) *vl 

-(ko^K^W'Vl2! 

X exp [- (k0 huz)2 I T?-T'? I 2/a21 (64) 

where V' - -V.   This expression can be readily evaluated with the substitution 

irp-rp''2      =      (Xp-xJ>)2 + (yp-yp)2 (65) 

26 



and the result is 

cs(Vrp)   = {["z+ [ 4<h/a>2 4 ko' (
X

P-
X
P> 

vx+ (yp-yp} uy] 

- 4(h/a)4 v\ kg [ (xp-xp)^x + (yp-yp)^y]2 

+ 2(h/a)2 o£*i$>] 

X cxP[(k0 h ^z/a)2 ((xp-x^)2 + (yp-y^)2) I (66a) 

K 
/N 

X C^J+^PR) • I (66b) 

vy    =      <8pT + W'j" (66c) 

which is approximately correct for all Xp, yp, x'p, yj>. 
Collecting results the correlation function of the reflected field is given by 

r,^   n    k°2 rrrr dxpdypdxpdyp r r :, * ,r r ♦,, 
ff.t) =—;////     —    Cir(rp.rp^T)CR(rp-rp) 

(47T)*- ^-/-/ rT rR rT rR 

X   IpCSjp) I2 lp(^Rp) l2m(t+T-7p)m*(t-7p) 

X exp [i OJQ Gfp (r p-r p-r) ] 

X \v\ + i 4(h/a) V kQ [(xp-xj>x + (yp-yp)^yl 

- 4(h/a)4 v\ k2[ (xp-x^x + <yp-y£)i>yl 
2 

+ 2(h/a)2 (*>2 + p2)J 

X expKk0 hi>z/a)2 ((xp-x^)2 + (yP-yji)2) ]    • 
(67) 

The integration over the primed coordinates can be performed after expanding r'p about 
rP 

From equation 36e then 

r p - rj> - tp - tj> (68a) 
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and analogous to the expansion in equation 45 is obtained 

/ r xP yP \ 
tp-tp' -    /        (^PT+ePR) •Tdx+   f        (epj+epR) -1 dy ] /cQ 

\  XP Jy? I 
(68b) 

where ßpy and 6pR are the unit vectors at the scattering point rp that are directed along 
the rays to the transmitter and receiver, respectively. 

With reference to figure 3 the expansions for the direction cosines of the rays 
about the point rp are 

r^pT +/epR) * i   ■      cos0Tx + cos0Rx (69a) 

(Spy + %?) 'T =      cosöTy + cosöRy (69b) 

(Spj + %$) ' k =      cosöTz + cosöj^ (69c) 

tfpr + €PR) "?  =      cos<ÖTx + eTX> + C0S<öRx + eRx> 

/\ 
=     <SpT+*pR)-i 

si»: öTx + si"2 öRx \ (xi-xÜ (69d) 
rT rR 

fepj + £pR) ■ j   =      cos(0Ty + eTy) + cos(0Ry + eRy) 

/.\ 
=     <®PT+'W"i 

/sin2 0Ty        sin2 0Ry 

\       *T "^R 

^PT + *PR> ' *  ■      cos^Tz+€Tz> + cos<öRz+eRz> 

(yp-yp) 

.pj x cpR 

where the angular subscripts are defined as in equation 46. 

CepT+^pp)'k (690 

28 



Figure 3.   Ray vectors at the point» T- and rjj 
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Substituting the direction cosine expansions into the time delay expressions and 
integrating then 

rp-r'p   =   (x'p - xp)i>x/c0 

sin- 0 Tx sin^ 6 
*    S'n/R*   hx'p-Xp^CQ 

+ (y'p - yp)"y/c0 

(sin- ff-py sin- 0 

'R 
Ly (y'P-yP)2/2c0 (70) 

which is the required expansion. 
The correlation function becomes 

c(t+T,t) = *&_ ft £^E ip(eTP)i2 \P(^)\ 
(4n)~JJ    r£    r£ 

X m(t+r-Tp) m*(t-Tp) exp(-i CJQ cxp r) 

xjfdexd€y Cw(e,rT) CR(e) 

X     {,2  - i 4(h/a)2 v] k0[ex,x ♦ e/y] 

-4(h/a)4,z
2k5[6x,x + e/yl2 

+ 2(h/a)2 {y\ + p*)] 

X exp[-(k0h*z/a)2(e2 + e2)] 

X exp 
/ / sin2 0TY       sin2 0Rv \ et 

* ey,y + 
si"2 eTy        si"2 eRy \ ej 

r-. rR 
(71a) 
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where 

rp-ip  =  e  =  exi + €yj   • (71b) 

If it is assumed that the correlation functions of the shading function and reflection co- 
efficient are approximately constant over the correlation distance of the medium, the inner 
integrals become elementary integrals and the correlation integral becomes 

\  / rT   rR 

X m(t+7 -Tp) m*(t-r p) exp (-i CJQ «p r) 

X v1 [»l + v~2(v2+v2)2 - 2{v2+v2) 1 z      z       z     x    y x    y 

X exp[- (a/2 h^)2 (AiA ]   • (72) 
A     y 

As for the case of the mean field calculation this integral is evaluated for the cases of 
scattering from the interior and exterior regions separately. 

Specular Scattering Correlation 

For the case of near field scattering the energy is received largely from the spec- 
ular point, for which vx = vy = 0, and the correlation function is approximated 

!6nrTSp  rRSp \h 
C(t+r,t) = 2 

X m(t+r-T <-p) m*(t-r §p) exp (-i CJQ a^p r) (73a) 

where all functions in the integrand are approximately constant over the interior region 
and the quantity A is the area of the ensonified surface.   A crude approximation of the 
area A, which is roughly the area of the interior region and that gives the correct range 
dependence, is given by 

2 
* rTSP   rRSP ,-,.. 

A      a      r   * (73b) 
(rTSp + rRSp)~ 
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With this expression equation 73a becomes 

16(rTSP+rRSP)z    \h) 

X   m(t+r-rSp)   m*(t-rSp)exp (-icjQaSpT) (73c) 

which is. easily obtained and shows the functional form of the correlation. 

Reverberant Scattering Correlation 

For the case of scattering from the exterior region we represent the complex en- 
velope product by the integral 

m(t+r-Tp) m*(t-7p) 

T 
=      JJJ       dt1      m(t'+r)m*(t')pe(t-rp-t») (74) 

where the function pe is defined in equation 51b.   Substituting into the correlation func- 
tion in equation 72, 

LimCR<°) I A 2 i      TT 

C(t+r,t)  = ^ -^- IH     exp (a/2h)2 x J       df   m(t»+r) m*(f ) 

XJJ^E   |p($Tp)|2   |p(^Rp)|2cn(o;rT) 
TT  rR 

X [1 +( 1%+SpR I 2-^z}^-2( '^PT^PR ' ^z^z1 

X     exp(-i co0 <X?T) pe(t-Tp-t') x exp[-(a/2 hi>z)" 

'WePR|2l 

(75a) 
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where 

"l + 'l + 'l = lgrr+gpR
|2 • (75b) 

By the same argument applied in the mean field calculation the radial coordinate can be 
integrated to obtain 

CR(0> C„(t)     a   2 

«"^ =  —Ü7- h    exp(a/2h) 

r l 

X /       dt'   m(t' + r) m*(t') 
0 

r 2ir 
X J d^ -J~2 ' p (tT?) j   ' p c8RP) >' 

rT  rR 

X      [l+(lgpT + epRl2-,z
2)/4 

2w 2, - 2(lepT+epRK - ^ )/^  1 exp(-i w0apT) 

X    cxp[-(a/2 h*z)2 lepT+epRl2] (-dpT/dt' ) 
(t,öT,t') 

(75c) 

where the integrand is evaluated at the ellipse-point (t, Oj, t1).   Also, since in the exterior 
region the shading correlation function is approximately independent of Qj and t  . it is 
denoted simply as a function of t. 

Two useful expressions for computing the integrand are the ellipse relation and the 
range relation, respectively. 

rT + rR    =    c0(t+tD-t') 

rT + rR    =    R + (DJ^-DJ) 'k 

(76a) 

(76b) 

where the quantity R is the horizontal range vector from the transmitter to the receiver 
and the quantities DR and Dj are the distances to the bottom from the transmitter and 
receiver. 
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With appropriate transpositions each expression is squared in equation 76 and com- 
bined to obtain the range expressions 

rT 

rR 

cg(WD-t')2 - [R2+(DR-DT)2] 

2Jc0(t+tD-t?)2 -   STp • [ft(DR-DT)1c] J 

cg(t+tD-t' )2 -   [R2+(DR-DT)21 

2Jc0(t+tD-f) +^Rp- [R(DR-DT)t]| 

(77a) 

(77b) 

The first relation gives the transmitter range coordinate to the ellipse point.   Expressions 
are obtained for the receiver range and polar coordinates to the ellipse point by first sub- 
stituting equation 77 into the ellipse relation in equation 76a to obtain the polar coordi- 
nate relation 

eRp ■ lR-KDR-DT)k] = % • [R+(DR-DT)fc] 

2cQ(t+tD-t') 1R2-KDR-DT)2] 

jc2(t+tD-t')2 + [R2-KDR-DT)2]} 

2 eQ(t+tD-t' ) eTp • [R-HDR-DT)kJ 

(c2(t+tD-t')2+[R2+(DR-DT)2]J 

(78a) 

and then substituting into equation 77b to obtain the range relation 

{cQ(t+tD-f )2 -2 cQ(Wp-t') fejp • [R^DR-DJ^ + lR2-KDR-DT)2l) 
FR 2|c0(t+tD-f ) - eTP • [R^DR-DT^1| 

(78b) 

With these coordinate relations the integrand in equation 75c can be evaluated. 
The derivative of the transmitter cylindrical polar coordinate is given by the deriva- 

tive of the transmitter range coordinate 
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dpT 1   dpf      J   _d_     2     2 
drT 

Pi "SJT"-    T "dt1   =   2   dt'   (rf+Df>  =   rT     dt' <79a> 

and the range derivative expression follows by direct computation 

1 - _^jq = 4c0[c0(t+tD-t') - eTP • [R+(DR-DT)£) 

VrTrR  dt' 

X |c5(t+tD-t' )2 - [R2+(DR-DT)2]) 

X (cQ(t+tD-t')2- 2 c0(t+tD-t') kr? ■ [R-KDR-DT)k] 

+ |R2-KDR-DT)2j|" (79b) 

where the range relations in equation 77f and equation 78b were used. 
The scattering correlation function contains the quantities 

'eyr + e>R|2 = 211+eVr -c>R] 

= 2 + [r^ + rj^-D2]/rTrR (80a) 

"z    = Vjl*l + DR/rR (80b) 

which can be evaluated using the preceding range relations.   However, since in the far field 
these functions are nearly constant in 0p it will be convenient to use the far field limits 
1^^+ epRl2 - 4, ?z - 0, rj~rR - <». 

Substituting into the correlation function and considering, for simplicity, the case 
of R » DR - DT, then 
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C0CR(0)Cn(t) /a\2 - 
Qt+r.t)   = K

4?r   "      ^)     exp(a/2h)2 

T 
X  /      dt'   m(t'+r)   m*(t') 

X f       döTllp(eTp)l2   lp(£Rp)l2 exp(-i CJ0 <*p r) 

X      [ 1 + (2/PZ)4 - 2(2/uz)2) (c0(t+tD-t') - gjp • R] 

X      [c^t+tD-t'^R2]-1 [cJ(t+tD-t') 

-2 c0(t+tD-t') e^p    R + R2]'1 

X   exp(-(a/h,z)2]}(tÖTtI)   m (8l) 

Further the case of times is considered much greater than the pulse length t+tp » t 
and the integrals in the correlation function uncouple 
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c0CR(0)Cn(t)    /a\2     exp(a/2h)- 

<**•*   '  —*      U       [cJ(t+tD)-R2] 

i 

f      dt'   m(t' + r) m*(t' ) 

X 
at 

J       d0T( I p(gTP) 12  I p(£Rp) 12 exp H CJ0 ap r) 

X      f 1 + (2/uzf - 2(2luz)2} [c0(t+tD) - Sjp • R] 

X      [Cp(t+tD): -2 c0(t+tD) eTP • R + R2}"1 

X   exp[-(a/h^)-] 
(t,ÖT) 

(82) 

These approximations reduce the correlation function to a simple form from which, in the 
following section, a Fourier transformation will give the GIPS of the reverberant scattering. 

4.    TIME EVOLVING SPECTRUM 

GENERALIZED INSTANTANEOUS POWER SPECTRUM (GIPS) 

The GIPS is the time varying power spectrum of a nonstationary process.   It is re- 
lated to the nonstationary correlation function of the process by the Fourier transform 

P(t,to)    =    Re    J       C(t+r,t) cxp(i CJ r) <\T (83) 

and this result, which is developed elsewhere,      is the extension of the Wiener-Kintchine 
theorem for stationary processes.   It resolves the time dependent power of the process 
into time varying spectral components and can be estimated by the sliding FFT calcula- 
tion. 12 
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Early Arriving Signal 

The early arriving signal is a mixture of the direct path signal and the specular 
scattered signal.   The GIPS of this signal is given by the Fourier transform of equation 
58 where the correlation function of the specular scattering is given in equation 73c. 
The result of this calculation is approximated by 

P(t,w) =-^lp(e^R)l2   lp(eRT)l2m(t)exp[i(w-KO0aD)tl M*(u-u>0 c*D) 
r 

X  jl +Cn(0,rTSp) CR(0)(a/4h)2 exp[i ^0t(aD-aSp) 

-HGJ-CJQ aSP) TSp] I (84) 

where beam pattern and path length differences have been ignored between the direct path 
signal and bottom scattered signal and the mean specular scattering in equation 50a is 
assumed to be negligible due to the exponential function. 

This expression shows that the GIPS is the sum of two functions.   The first is the 
GIPS of the direct path signal; the second is the GIPS of the direct path signal which has 
the Lloyd mirror effect modulation impressed upon it.   The amplitude of this modulation 
depends on the bottom characteristics, but for typical conditions can be expected to be 
of the order of unity, i.e., the Lloyd mirror modulation produces surface variations that 
are approximately 50 percent of the GIPS values. 

Late Arriving Signal 

The GIPS for the late arriving signal is given by the Fourier transform of equation 
82.   Since this expression is a product of two functions of the transform variable, there 
is obtained from the the convolution theorem 

c0 CR(0) Cn< 0   /a\ 2       exp (a/2h)2 

P(t,co)    =    -^—* —  -        —    [P(<o)*Q(t,a;)l 
4TT \h/        [cQ(t+tD)-R2] 

(85a) 

P(co)   =   FT 

T 
f    dt'   m(t'+r)m*(t') (85b) 
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(Xt.co)   =   FT 

f2w I 
J        d0T I I pCejp) 12   I pC^Rp) I 2 exp (-i OJQ ap r) 

X [1 + (2/*>z)4 -2(2/*z)2] Ic0(t+tD) - GTP • R] 

X [cJ(t+tD) -2 c0(t-tD) gjp • iC + R:l"1 

Xexpf-Ca/h^)2] 
(t,0T) 

(85c) 

where the asterisk denotes convolution and the symbol FT {•} denotes Fourier transfor- 
mation wrt the "r" variable. The first Fourier transform, P(co), is the signal modulation 
power spectrum, while the second is readily found to be 

Q(t,w)   =   2TT   y     d0T    lp(gTp)l2   lp(ew)l28(«-«0ap) 

X (I + (2A>Z)4 - 2(2/*>z)2] [c0(t+tD) - gTP • R] 

X [cQ(t+tD)2 -2 c0(t+tD) eTp • R + R2]"1 

Xexp[-(a/hiO:| 
(t,0T) 

(86) 

Inspection of this integral shows that the delta function contributes only for those angles 
satisfying the condition 

cj - CJQ ap  =  0   , (87a) 

i.e.. the movements of the transmitter and receiver platforms generate a mapping between 
angle and frequency.   Denoting the direction of transmitter and receiver travel to be ay 
and aR, respectively, then 

^cos(0T-aT)+1^cos(0R-aR)   =   —^ (87b) 
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This expression is valid for the far field in which the vertical deflections can be ignored 
and the transmitter and receiver polar angles are related through equation 78a. 

This relation shows that the energy, transmitted into the angle Oj and received 
from the angle 0R, is mapped into a limited band of frequencies.   Further, it shows 
that the energy, transmitted and received via directions that are symmetrical about the 
platform movements, are mapped into the same frequencies; i.e., defining the symmetri- 
cal directions to be Oj and 0R then 

otj - Qj   = 0j - «j (88a) 

aR"öR  = 0R-aR   • (88b) 

Consequently equation 87b will have two sets of angular roots (0j, 0R) for each frequency. 
The times of arrival corresponding to each set of roots must satisfy equation 78a and, 
generally, will not be the same.   However, simple geometric arguments can be constructed 
to show that equation 87b will always have a double root system.   In the long time limit, 
t - °°, equation 78a yields the limit 0R - 0y.   Equation 87b shows that in this limit the 
angles corresponding to the maximum and minimum frequencies arc separated by n 
radians.   The axis that separates these angles is designated as the ambiguity axis.   The 
integral in equation 86 separates into two terms corresponding to the contributions from 
each side of the ambiguity axis at each frequency 

Q(t,cj)  =   Q(1)(t,co) + Q(2>(t,cj) (89a) 

Q^>(t,W)  =   2TT lp(eTP)l2  lp(eRP)l2 

X [1 + (2/»z)4 - 2(2/*z)2l [c0(t+tD) - £TP • Rl 

X [0Q(t+tD)2 -2 c0(t+tD) eTp • R + R2!"1 

X exp[-(a/hi>z)2]    . (89b) 

Collecting terms the GIPS in equation 85a becomes 

CrjCR(0)Cn(t)/a\2       exp (a/2h)2 

^   = 4. [*)      [c^t+t^-R2! 

X   P(co) * [QW (t,cj) + Q(2> (t,w) 1 (90) 
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which shows that the power at each time and frequency is contributed from both sides 
of the ambiguity axis.   Each contribution is amplitude weighted by the beam pattern 
and transmission path associated with the respective side of the ambiguity axis and 
the power is smoothed in frequency via a convolution with the transmit power spec- 
trum.   If the bandwidth of the transmitted signal is small compared to the band of 
Doppler shifted frequencies then it is approximated 

P(CJ)   =   2TT 6(CJ) 

and the GIPS obtained 

P(t.w)   -   c0CR(0)Cn(t) L£ \ 
:      exp (a/2h)2 

hi     [cg(t+tD)-R2] 

X [Q(1)(t,c*) + Q(2>(t,«)]/2   • (92) 

This is our principal representation of the far field GIPS which, to be complete, needs 
an explicit angle-frequency mapping relation. 

An exact angle-frequency mapping relation for the far field can be obtained from 
equation 78a and equation 87b but for these purposes it is instructive and useful to 
obtain a longtime, t - °°, zeroth order approximation.   Substituting this approximtion 
of equation 78a, 

cos(JR-0  =  cos(0T-T)   , (93) 

which is exact in the long time limit, into 87b, the angle-frequency mapping obtained 
is 

B   /CJ-OJQ\      C 
COSCOJ-D    =     —    ± 

A2\   co0 /     A2 
A~- 

CO 0 

(94a) 

A  =      [v^ + 2vTvR cos(aj-aR) + v^] 1/2/c0 (94b) 

B   =       [vT cos(r-aT) + vR cos(r-aR) 1 /cQ (94c) 

C   =       lvT sin(r-aT) + vR sin(r-aR) ] /cQ (94d) 

where T is the angle to the range vector R and where the constants A, B, C are strictly 
functions of the track parameters.   The constant A gives the maximum range of 
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fractional Doppler shift in frequency, B gives the fractional Doppler shift in frequency 
due to the relative range rate and C gives the fractional Doppler shift due to the rela- 
tive transversal rate.   In principle these constants are measurable, since A and B can be 
estimated from spectral data and they are related to C through the relation 

A2   =   B2   +  C2   • (94e) 

Further, the angle-frequency mapping shows explicitly that two angles are mapped into 
each frequency in the Doppler band COQ(1 ± A); i.e., the spectral density at any fre- 
quency in general cannot be unambiguously resolved into components associated with 
the directions of transmission.   The direction of the ambiguity axis corresponds to the 
upper and lower edges of the Doppler band and is given by 

dj  =   T + cos'^B/A)   • (940 

These mapping relations can be derived more accurately by using higher order approxi- 
mations of equation 78a. 

SPECTRAL VARIANCE 

The variance of the spectral ensemble provides an estimate of the usefulness of 
any one spectral estimate and a bound on this function is given by 

A : P(t,w) < ft       drdr' {E 0{t+r) 0*(t) - C(t+T.t)l 
-oo I J 

X [0*(t+r')0(t)-C*(t+r',t)l J 

X exp[i GJ(T-T')]    . (95) 

For the case of ocean bottom reverberation the signal can be approximated as a Gaussian 
random variable and using the Gaussian moment expression 
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E[XJX2X3X4]       =      E[x!X2] E[x3x4] 

+EIXJX3J Efx2x4] 

+E[xjx4] E[x2X3J 

-2 E[Xl] E[x2] E[x3] E[x4] (96) 

the variance expression can be approximated. 
For the real signal case the bound readily is obtained 

A 2 P(t,co) <    < 02(t)> <l M(CU)-CJ0 12  > + P2(t,co) 

-2 <0(t)>2      l< M(CJ-O;0)>   I2 

<    2[< 02(t)>    <IM(CO-CJ0)I2 > 

-<0(t)>2      KM(co-w0)>l2] (97) 

where 

P:(Uco)    = El Re 0(t) exp(i cot) M*(o>-a;0)l2 

<<02(t)>    <lM(co-co0)|2 >     • (98) 

Normalizing wrt the GIPS envelope 

P^acj)   =    < 02(t)>    <IM(CJ-CO0)I
2
 > 

the coefficient of variation obtained is 
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A2 P(t,cj) 

P|(t,w) 

<   2 1 - 
<0(t)   >2   l<M(o;-a;0)>l2 

<02(t)>   <lM(co-co0)l2> 
(100a) 

which has the approximate bound 

A2 P(t,cj) 

p|(t,Cü) 
<   2 (100b) 

for both the early received signal and the late received signal.   Loosely interpreted, this 
result shows that the most any one spectral estimate is expected to differ from the GIPS 
is approximately 40 percent of the GIPS value.   This variation is comparable to the 
amplitude of the Lloyd mirror effect modulation of the GIPS in equation 84, which 
implies that the Lloyd mirror effect cannot be estimated from one realization of the 
spectrum for the case of a moderately rough bottom. 
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CONCLUSIONS 

The GIPS expressions obtained here for the early received signal and the later 
received signal are our results of principal interest.   They exhibit relations between 
transmitter and receiver parameters and the received spectral components that can be 
exploited.   In particular, the expressions for the later received signal in equation 89 and 
equation 92 are a generalization of Halley's original work and show how the transmitter 
and receiver beam deployment parameters influence the later received signal.   These 
expressions provide insights into ocean information transfer problems. 

45 



REFERENCES 

1. O. D. Grace, Acoustic Ray Wave Synthesis.   NUC TP 408, June 1974. 

2. O.D. Grace, Signal Variation in a Random Medium.   NUC TP 474, July 1975. 

3. Carl Eckart, The Scattering of Sound from the Sea Surface.   J. Acoust. Soc. 
Am., 25, 566-70, May 1953. 

4. C. W. Horton, Sr. and T. G. Muir, Theoretical Studies on the Scattering of 
Acoustic Waves from a Rough Surface.   J. Acoust. Soc. Am., 4K 627-34, 
March 1967. 

5. C. W. Horton, Sr., S. K. Mitchell and G. R. Barnard, Model Studies on the 
Scattering of Acoustic Waves from a Rough Surface. J. Acoust. Soc. Am., 
41, 635-43, March 1967. 

6. E. P. Gulin, Amplitude and Phase Fluctuations of a Sound Wave Reflected 
from a Statistically Uneven Surface.   Sov. Phys.-Acoust., 8, 135-140, October- 
December 1962. 

7. Petr Beckmann and Andre' Spizzichino, The Scattering of Electromagnetic 
Waves from Rough Surfaces.   Pergamon Press, New York, 1963. 

8. I. Fortuin, Survey of Literature on Reflection and Scattering of Sound Waves 
at the Sea Surface.   J. Acoust. Soc. Am., 47, 1209-28, May 1970. 

9. Robert Halley, A Method for Passive Determination of a Range to a Pinging 
Searchlight Sonar.   NEL TM 231, January 1957. 

10. Robert Halley, Notes on the Analysis of Reverberation Signals from a Remote 
Pinging Searchlight Sonar.   NEL TM 261, June 1957. 

11. Robert Halley, An Application of the Analysis of Reverberation from a Re- 
mote Searchlight Sonar.   NEL TM 262, September 1957. 

12. O. D. Grace, Time Evolving Spectra.   NUC TP 509, April 1976. 

46 



APPENDIX:   HUYGEN'S PRINCIPLE 

It is shown elsewhere* that the acoustic field within a volume V containing har- 
monic sources and bounded by the surface S (see figure A.l) is given by RWS formu- 
lation 

*?>   = to^ + h I      dv 0(£) y&T) 

j      ds n 
J S 

[0«)V-V0U) X(ir) (A.l) 

where the unit vector n is directed into the volume.   In this field expression the first 
term represents the direct path field and the volume integral represents the field due to 
scattering by the medium inhomogeneities.   The surface integral represents the field 
scattered by the surface. 

In the following a theorem by Baker and Copson** is extended and shows that 
the RWS surface integral produces a null effect within V when the surface field is re- 
placed by the direct path field; i.e., Huygen's principle is demonstrated showing out- 
going waves have no effect at a point after propagating past that point. 

Consider a rederivation of equation A.l with the modification that the sources 
are excluded from V by a surface S'(see figure A.l). By inspection 

«r) -    fc f    dv MS) 7(£r) 
J\T 

f   f   (  ds'   -f   J     ds j n -[0(?)V- V 0(1) X(l»r) 

(A.2) 

*      O. D. Grace, Acoustic Ray Wave Synthesis.   NUC TP 408, June 1974 and O. D. Grace. Signal Variation in a 
Random Medium.   NUC TP 474, July 1976 

**    B. B. Baker and E.  I   Copton, The Mathematical Theory of Huygen's Principle. Oxford University Press, 
1939. 
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Figure A.I.   Acoustic cavity. 
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where n is directed into the volume.   Letting the surface S be a spherical shell of 
radius R tending to infinity then 

lc   = 
Lim 
R-oo /dw R2[0(£)VR  -VR0(I)]   X(l,r) (A.3) 

where da> is the solid angle subtended by an element of the sphere.   For the modified 
radiation condition1* 

&R2i#(i)vR -vR0(?)i xtV) - o (A.4) 

this term vanishes and by redefining the unit normal vector to be directed within S' the 
"exterior" form of the RWS formulation is obtained, as opposed to the "interior" form 
given by equation A. 1 

0(r)    -   fe f     dv 0(|) 7(1,?) 

f       els'   ft .[0(J)V-V0(I)1 
J   S' 

X({,r) (A.5) 

Huygen's principle is demonstrated with the aid of the interior and exterior forms. 
Consider the cavity in figure A. 2 in which the field point and sources are sep- 

arated by the imaginary boundary B which divides S into the surfaces Sj and S2, i.e., 
S = Sj + S2.   If S and B are imaginary constructions within the field, then the fields 
on S and B are given by the direct path field and the field at r can be represented by 
both the interior and exterior forms, respectively 

«?> = h (   dv *o(f) 7(1,?) 

f dsn • [0O(!)V-V0O(I) 
J   Sj+B 

Xtt,r) (A.6a) 
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Figure A.2. Constructed surfaces. 
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«a   =  *F /"    dv 0O(|) 7(|,J) 

+     f 
S^+B 

X(£,r)   • (A.6b) 

Equating expressions the integrals over B are found to cancel, due to opposing unit vec- 
tors, and 

f dsn -[00(1)^-7*0(1)]   x(V)  =  0   ■ (A.7) 

This result shows that the surface scattering operator of the RWS formulation, with re- 
spect to an arbitrary closed surface S, produces a null effect within S when acting on the 
incident field, i.e., that Huygen's principle is satisfied. 
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